Absolute Value Preconditioning for Symmetric Indefinite Linear Systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Absolute Value Preconditioning for Symmetric Indefinite Linear Systems

We introduce a novel strategy for constructing symmetric positive definite (SPD) preconditioners for linear systems with symmetric indefinite matrices. The strategy, called absolute value preconditioning, is motivated by the observation that the preconditioned minimal residual method with the inverse of the absolute value of the matrix as a preconditioner converges to the exact solution of the ...

متن کامل

Block preconditioners for symmetric indefinite linear systems

This paper presents a systematic theoretical and numerical evaluation of three common block preconditioners in a Krylov subspace method for solving symmetric indefinite linear systems. The focus is on large-scale real world problems where block approximations are a practical necessity. The main illustration is the performance of the block diagonal, constrained, and lower triangular precondition...

متن کامل

A Note on Preconditioning for Indefinite Linear Systems

Preconditioners are often conceived as approximate inverses. For nonsingular indeenite matrices of saddle-point (or KKT) form, we show how preconditioners incorporating an exact Schur complement lead to preconditioned matrices with exactly two or exactly three distinct eigenvalues. Thus approximations of the Schur complement lead to preconditioners which can be very eeective even though they ar...

متن کامل

Preconditioning and iterative solution of symmetric indefinite linear systems arising from interior point methods for linear programming

We propose to compute the search direction at each interior-point iteration for a linear program via a reduced augmented system that typically has a much smaller dimension than the original augmented system. This reduced system is potentially less susceptible to the ill-conditioning effect of the elements in the (1, 1) block of the augmented matrix. A preconditioner is then designed by approxim...

متن کامل

Symmetric indefinite systems for interior point methods

We present a unified framework for solving linear and convex quadratic programs via interior point methods. At each iteration, this method solves an indefinite system whose matrix is [_~-2 A v] instead of reducing to obtain the usual AD2A v system. This methodology affords two advantages: (1) it avoids the fill created by explicitly forming the product AD2A v when A has dense columns; and (2) i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Scientific Computing

سال: 2013

ISSN: 1064-8275,1095-7197

DOI: 10.1137/120886686